Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38619980

RESUMO

Two Gram-stain-negative bacterial strains, R39T and R73T, were isolated from the rhizosphere soil of the selenium hyperaccumulator Cardamine hupingshanesis in China. Strain R39T transformed selenite into elemental and volatile selenium, whereas strain R73T transformed both selenate and selenite into elemental selenium. Phylogenetic and phylogenomic analyses indicated that strain R39T belonged to the genus Achromobacter, while strain R73T belonged to the genus Buttiauxella. Strain R39T (genome size, 6.68 Mb; G+C content, 61.6 mol%) showed the closest relationship to Achromobacter marplatensis LMG 26219T and Achromobacter kerstersii LMG 3441T, with average nucleotide identity (ANI) values of 83.6 and 83.4 %, respectively. Strain R73T (genome size, 5.22 Mb; G+C content, 50.3 mol%) was most closely related to Buttiauxella ferragutiae ATCC 51602T with an ANI value of 86.4 %. Furthermore, strain A111 from the GenBank database was found to cluster with strain R73T within the genus Buttiauxella through phylogenomic analyses. The ANI and digital DNA-DNA hybridization values between strains R73T and A111 were 97.5 and 80.0% respectively, indicating that they belong to the same species. Phenotypic characteristics also differentiated strain R39T and strain R73T from their closely related species. Based on the polyphasic analyses, strain R39T and strain R73T represent novel species of the genera Achromobacter and Buttiauxella, respectively, for which the names Achromobacter seleniivolatilans sp. nov. (type strain R39T=GDMCC 1.3843T=JCM 36009T) and Buttiauxella selenatireducens sp. nov. (type strain R73T=GDMCC 1.3636T=JCM 35850T) are proposed.


Assuntos
Achromobacter , Cardamine , Selênio , Ácidos Graxos/química , Análise de Sequência de DNA , Cardamine/genética , Filogenia , Rizosfera , Composição de Bases , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , RNA Ribossômico 16S/genética , Ácido Selenioso
2.
BMC Plant Biol ; 24(1): 199, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38500044

RESUMO

BACKGROUND: The selenomethionine cycle (SeMTC) is a crucial pathway for the metabolism of selenium. The basic bioinformatics and functions of four enzymes involved in the cycle including S-adenosyl-methionine synthase (MAT), SAM-dependent methyltransferase (MTase), S-adenosyl-homocysteine hydrolase (SAHH) and methionine synthase (MTR), have been extensively reported in many eukaryotes. The identification and functional analyses of SeMTC genes/proteins in Cardamine hupingshanensis and their response to selenium stress have not yet been reported. RESULTS: In this study, 45 genes involved in SeMTC were identified in the C. hupingshanensis genome. Phylogenetic analysis showed that seven genes from ChMAT were clustered into four branches, twenty-seven genes from ChCOMT were clustered into two branches, four genes from ChSAHH were clustered into two branches, and seven genes from ChMTR were clustered into three branches. These genes were resided on 16 chromosomes. Gene structure and homologous protein modeling analysis illustrated that proteins in the same family are relatively conserved and have similar functions. Molecular docking showed that the affinity of SeMTC enzymes for selenium metabolites was higher than that for sulfur metabolites. The key active site residues identified for ChMAT were Ala269 and Lys273, while Leu221/231 and Gly207/249 were determined as the crucial residues for ChCOMT. For ChSAHH, the essential active site residues were found to be Asn87, Asp139 and Thr206/207/208/325. Ile204, Ser111/329/377, Asp70/206/254, and His329/332/380 were identified as the critical active site residues for ChMTR. In addition, the results of the expression levels of four enzymes under selenium stress revealed that ChMAT3-1 genes were upregulated approximately 18-fold, ChCOMT9-1 was upregulated approximately 38.7-fold, ChSAHH1-2 was upregulated approximately 11.6-fold, and ChMTR3-2 genes were upregulated approximately 28-fold. These verified that SeMTC enzymes were involved in response to selenium stress to varying degrees. CONCLUSIONS: The results of this research are instrumental for further functional investigation of SeMTC in C. hupingshanensis. This also lays a solid foundation for deeper investigations into the physiological and biochemical mechanisms underlying selenium metabolism in plants.


Assuntos
Cardamine , Selênio , Selenometionina , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase , Simulação de Acoplamento Molecular , Sequência de Aminoácidos , Filogenia , Proteínas
3.
Front Immunol ; 15: 1342210, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38318186

RESUMO

This study aimed to assess the impact of dietary selenoprotein extracts from Cardamine hupingshanensis (SePCH) on the growth, hematological parameters, selenium metabolism, immune responses, antioxidant capacities, inflammatory reactions and intestinal barrier functions in juvenile largemouth bass (Micropterus salmoides). The base diet was supplemented with four different concentrations of SePCH: 0.00, 0.30, 0.60 and 1.20 g/Kg (actual selenium contents: 0.37, 0.59, 0.84 and 1.30 mg/kg). These concentrations were used to formulate four isonitrogenous and isoenergetic diets for juvenile largemouth bass during a 60-day culture period. Adequate dietary SePCH (0.60 and 1.20 g/Kg) significantly increased weight gain and daily growth rate compared to the control groups (0.00 g/Kg). Furthermore, 0.60 and 1.20 g/Kg SePCH significantly enhanced amounts of white blood cells, red blood cells, platelets, lymphocytes and monocytes, and levels of hemoglobin, mean corpuscular volume and mean corpuscular hemoglobin in the hemocytes. In addition, 0.60 and 1.20 g/Kg SePCH increased the mRNA expression levels of selenocysteine lyase, selenophosphate synthase 1, 15 kDa selenoprotein, selenoprotein T2, selenoprotein H, selenoprotein P and selenoprotein K in the fish liver and intestine compared to the controls. Adequate SePCH not only significantly elevated the activities of antioxidant enzymes (Total superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase), the levels of total antioxidant capacity and glutathione, while increased mRNA transcription levels of NF-E2-related factor 2, Cu/Zn-superoxide dismutase, catalase, glutathione reductase and glutathione peroxidase. However, adequate SePCH significantly decreased levels of malondialdehyde and H2O2 and the mRNA expression levels of kelch-like ECH-associated protein 1a and kelch-like ECH-associated protein 1b in the fish liver and intestine compared to the controls. Meanwhile, adequate SePCH markedly enhanced the levels of immune factors (alkaline phosphatase, acid phosphatase, lysozyme, complement component 3, complement component 4 and immunoglobulin M) and innate immune-related genes (lysozyme, hepcidin, liver-expressed antimicrobial peptide 2, complement component 3 and complement component 4) in the fish liver and intestine compared to the controls. Adequate SePCH reduced the levels of pro-inflammatory cytokines (tumour necrosis factor-α, interleukin 8, interleukin 1ß and interferon γ), while increasing transforming growth factor ß1 levels at both transcriptional and protein levels in the liver and intestine. The mRNA expression levels of mitogen-activated protein kinase 13 (MAPK 13), MAPK14 and nuclear factor kappa B p65 were significantly reduced in the liver and intestine of fish fed with 0.60 and 1.20 g/Kg SePCH compared to the controls. Histological sections also demonstrated that 0.60 and 1.20 g/Kg SePCH significantly increased intestinal villus height and villus width compared to the controls. Furthermore, the mRNA expression levels of tight junction proteins (zonula occludens-1, zonula occludens-3, Claudin-1, Claudin-3, Claudin-5, Claudin-11, Claudin-23 and Claudin-34) and Mucin-17 were significantly upregulated in the intestinal epithelial cells of 0.60 and 1.20 g/Kg SePCH groups compared to the controls. In conclusion, these results found that 0.60 and 1.20 g/Kg dietary SePCH can not only improve growth, hematological parameters, selenium metabolism, antioxidant capacities, enhance immune responses and intestinal functions, but also alleviate inflammatory responses. This information can serve as a useful reference for formulating feeds for largemouth bass.


Assuntos
Bass , Cardamine , Selênio , Animais , Antioxidantes/metabolismo , Catalase , Bass/genética , Muramidase/metabolismo , Selênio/farmacologia , Cardamine/genética , Cardamine/metabolismo , Glutationa Redutase/genética , Peróxido de Hidrogênio , Intestinos , Selenoproteínas , RNA Mensageiro/genética , Glutationa Peroxidase/genética , Superóxido Dismutase/genética , Claudinas
4.
Ecotoxicol Environ Saf ; 272: 116101, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38359653

RESUMO

Selenium (Se) and cadmium (Cd) usually co-existed in soils, especially in areas with Se-rich soils in China. The potential health consequences for the local populations consuming foods rich in Se and Cd are unknown. Cardamine hupingshanensis (HUP) is Se and Cd hyperaccumulator plant that could be an ideal natural product to assess the protective effects of endogenous Se against endogenous Cd-caused bone damage. Male C57BL/6 mice were fed 5.22 mg/kg cadmium chloride (CdCl2) (Cd 3.2 mg/kg body weight (BW)), or HUP solutions containing Cd 3.2 mg/kg BW and Se 0.15, 0.29 or 0.50 mg/kg BW (corresponding to the HUP0, HUP1 and HUP2 groups) interventions. Se-enriched HUP1 and HUP2 significantly decreased Cd-induced femur microstructure damage and regulated serum bone osteoclastic marker levels and osteogenesis-related genes. In addition, endogenous Se significantly decreased kidney fibroblast growth factor 23 (FGF23) protein expression and serum parathyroid hormone (PTH) levels, and raised serum calcitriol (1,25(OH)2D3). Furthermore, Se also regulated gut microbiota involved in skeletal metabolism disorder. In conclusion, endogenous Se, especially with higher doses (the HUP2 group), positively affects bone formation and resorption by mitigating the damaging effects of endogenous Cd via the modulation of renal FGF23 expression, circulating 1,25(OH)2D3 and PTH and gut microbiota composition.


Assuntos
Cardamine , Selênio , Camundongos , Animais , Selênio/farmacologia , Selênio/metabolismo , Cádmio , Camundongos Endogâmicos C57BL , Solo
5.
Food Chem ; 444: 138675, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38335688

RESUMO

Inadequate Se intake can enhance vulnerability to certain health risks, with supplementation lessening these risks. This study investigated the bioavailability of Se and Se species in five Se compounds and in Se-rich Cardamine violifolia using in vitro digestion coupled with a Caco-2 cell monolayer model, which enabled the study of Se transport and uptake. Translocation results showed that SeCys2 and MeSeCys had high translocation rates in C. violifolia leaves (CVLs). The uptake rate of organic Se increased with time, and MeSeCys exhibited a higher uptake rate than that for SeCys2 and SeMet. The translocation mechanisms of SeMet, Se(IV), and Se(VI) were passive transport, whereas those of SeCys2 and MeSeCys were active transport. The bioavailability of organic Se was higher than that of inorganic Se, with a total Se bioavailability in CVLs of 49.11 %. This study would provide a theoretical basis for the application of C. violifolia in the functional food.


Assuntos
Cardamine , Compostos de Selênio , Selênio , Humanos , Células CACO-2 , Disponibilidade Biológica , Digestão
6.
Biol Trace Elem Res ; 202(2): 527-537, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37233925

RESUMO

Selenium-enriched Cardamine violifolia (SEC), a cruciferous plant, exerts excellent antioxidant and anti-inflammatory capacity, but its effect on hepatic function is unclear. This study investigated the effect and potential mechanism of SEC on hepatic injury induced by lipopolysaccharide (LPS). Twenty-four weaned piglets were randomly allotted to treatment with SEC (0.3 mg/kg Se) and/or LPS (100 µg/kg). After 28 days of the trial, pigs were injected with LPS to induce hepatic injury. These results indicated that SEC supplementation attenuated LPS-induced hepatic morphological injury and reduced aspartate aminotransferase (AST) and alkaline phosphatase (ALP) activities in plasma. SEC also inhibited the expression of pro-inflammatory cytokines such as interleukin 6 (IL-6) and tumor necrosis factor-alpha (TNF-α) after the LPS challenge. In addition, SEC improved hepatic antioxidant capacity via enhancing glutathione peroxidase (GSH-Px) activity and decreasing malondialdehyde (MDA) concentration. Moreover, SEC downregulated the mRNA expression of hepatic myeloid differentiation factor 88 (MyD88) and nucleotide-binding oligomerization domain proteins 1 (NOD1) and its adaptor molecule receptor interacting protein kinase 2 (RIPK2). SEC also alleviated LPS-induced hepatic necroptosis by inhibiting RIPK1, RIPK3, and mixed-lineage kinase domain-like (MLKL) expression. These data suggest that SEC potentially mitigates LPS-induced hepatic injury via inhibiting Toll-like receptor 4 (TLR4)/NOD2 and necroptosis signaling pathways in weaned piglets.


Assuntos
Cardamine , Hepatopatias , Selênio , Suínos , Animais , Lipopolissacarídeos , Selênio/farmacologia , Receptor 4 Toll-Like/metabolismo , Cardamine/metabolismo , Antioxidantes/farmacologia , Necroptose , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico
7.
Chem Biodivers ; 21(2): e202301428, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38116867

RESUMO

Cardamine violifolia is a unique selenium hyperaccumulating vegetable in China, but its flowers are commonly wasted in large-scale cultivation. To better utilize this resource, this study explored the selenium content, chemical composition, and volatile organic compounds (VOCs) of hydro-distilling essential oil (EO) and hydrosol from C. violifolia flowers. ICP-MS results indicated that the EO and hydrosol contained selenium reaching 13.66±2.82 mg/kg and 0.0084±0.0013 mg/kg, respectively. GC-MS analysis revealed that organic acids, hydrocarbons, and amines were the main components of EO. Additionally, benzyl nitrile, benzaldehyde, benzyl isothiocyanate, benzyl alcohol, megastigmatrienone, and 2-methoxy-4-vinylphenol also existed in considerable amounts. The hydrosol extract had fewer components, mainly amines. HS-SPME-GC-MS corresponded to the composition analysis and aromatic compounds were the prevalent VOCs, while HS-GC-IMS primarily identified C2-C10 molecular alcohols, aldehydes, ethers, and sulfur-containing compounds. This study first described the chemical composition and VOC profiles of EO and hydrosol from selenium hyperaccumulating plant.


Assuntos
Cardamine , Óleos Voláteis , Selênio , Compostos Orgânicos Voláteis , Selênio/análise , Óleos Voláteis/química , Cardamine/química , Flores/química , Aminas/análise , Compostos Orgânicos Voláteis/análise
8.
Ecotoxicol Environ Saf ; 264: 115450, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37688863

RESUMO

Cardamine hupingshanensis (C. hupingshanensis) is known for its ability to hyperaccumulate selenium (Se). However, the roles of the rhizobacteria or endophytes in Se hyperaccumulation have not been explored in C. hupingshanensis. Here, in-situ-like pot experiments were conducted to investigate the characteristics of Se accumulation throughout C. hupingshanensis growth stages and its correlations with rhizobacteria and endophytes under varying soil Se levels. Results showed that Se levels in roots, stems and leaves increased from the seedling to bolting stage, but remained relatively stable during the flowering and maturity. Leaves exhibited the highest Se levels (736.48 ± 6.51 mg/kg DW), followed by stems (575.39 ± 27.05 mg/kg DW), and lowest in roots (306.62 ± 65.45 mg/kg DW) under high-Se stress. The Se translocation factors from soils to C. hupingshanensis roots was significantly higher (p < 0.05) in low-Se soils compared to medium- and high-Se soils. Rhizobacterial diversity showed significant positive correlations (p < 0.05) with both total and bioavailable soil Se contents. The levels of soil Se and growth stages of C. hupingshanensis were found to have significant effects (p < 0.03) on the compositions of rhizosphere bacteria and C. hupingshanensis endophytes. Low-abundance bacteria (< 5%), including Gemmatimonadetes, Latescibacteria and Nitrospirae, were identified to potentially increase the bioavailable Se levels in the rhizosphere. The Se accumulation significantly decreased (p < 0.05) in C. hupingshanensis grown in sterilized low- (32.4%), medium- (17%) and high-Se (42%) soils. Endophytes in C. hupingshanensis, such as Firmicutes and Proteobacteria, were likely recruited from the rhizobacteria, as evidenced by the isolated bacterial strains, and played an important role in Se hyperaccumulation, particularly during the flowering stage. This study provides new insights into potential mechanism underlying Se hyperaccumulation in C. hupingshanensis.


Assuntos
Alphaproteobacteria , Cardamine , Selênio , Animais , Endófitos , Estágios do Ciclo de Vida , Solo
9.
J Basic Microbiol ; 63(11): 1305-1315, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37551746

RESUMO

Selenium (Se) is a dietary essential trace element for humans with various physiological functions and it could also be accumulated by some plant species, like Astragalus bisulcatus, Stanleya pinnata, and Cardamine hupinshanensis. A novel Gram-stain-negative, facultatively anaerobic, selenite-tolerant bacterium, designated strain YLX-1T , was isolated from the rhizosphere of a Se hyperaccumulating plant, Cardamine hupingshanensis in Enshi, China. Phylogenetic analysis based on 16 S rRNA gene sequences indicated that strain YLX-1T is a potential new species in the genus Wautersiella. Strain YLX-1T could grow in the temperature range of 4-37°C (optimally at 28°C) and in the pH range of 5-9 (optimum pH 7), which also could tolerate Se up to 6000 mg Se/L via producing extracellular red nano-Se with 100-300 nm size. However, it could predominantly accumulate selenocystine (SeCys2 ) in the cell under lower Se stress (1.5 mg Se/L). These results would help broaden our knowledge about the Se accumulation and transformation mechanism involved in rhizosphere bacteria like strain YLX-1T in C. hupingshanensis. Based on polyphasic data, we propose the creation of the new species Wautersiella enshiensis sp. nov., strain YLX-1T ( = CCTCC M 2013671) which will be promising to produce nano-Se as fertilizer, food additives or medicine.


Assuntos
Cardamine , Selênio , Bactérias/genética , Técnicas de Tipagem Bacteriana , Cardamine/genética , DNA Bacteriano/genética , Ácidos Graxos , Filogenia , Rizosfera , RNA Ribossômico 16S/genética , Ácido Selenioso , Análise de Sequência de DNA
10.
PLoS Biol ; 21(7): e3002191, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37463141

RESUMO

We study natural DNA polymorphisms and associated phenotypes in the Arabidopsis relative Cardamine hirsuta. We observed strong genetic differentiation among several ancestry groups and broader distribution of Iberian relict strains in European C. hirsuta compared to Arabidopsis. We found synchronization between vegetative and reproductive development and a pervasive role for heterochronic pathways in shaping C. hirsuta natural variation. A single, fast-cycling ChFRIGIDA allele evolved adaptively allowing range expansion from glacial refugia, unlike Arabidopsis where multiple FRIGIDA haplotypes were involved. The Azores islands, where Arabidopsis is scarce, are a hotspot for C. hirsuta diversity. We identified a quantitative trait locus (QTL) in the heterochronic SPL9 transcription factor as a determinant of an Azorean morphotype. This QTL shows evidence for positive selection, and its distribution mirrors a climate gradient that broadly shaped the Azorean flora. Overall, we establish a framework to explore how the interplay of adaptation, demography, and development shaped diversity patterns of 2 related plant species.


Assuntos
Arabidopsis , Cardamine , Arabidopsis/genética , Cardamine/genética , Genótipo , Fenótipo , Demografia
11.
Food Chem ; 427: 136710, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37406448

RESUMO

Cardamine violifolia is a unique selenium (Se)-hyperaccumulating vegetable in China. The total Se content and Se speciation of three edible parts, including flowers, stems, and leaves were detected by HPLC-ICP-MS. Volatile organic compounds (VOCs) greatly impact food flavor. The VOCs of three samples were analyzed by E-nose, HS-GC-IMS, and HS-SPME-GC-MS. The results showed that the total Se content in flowers was significantly higher than that in leaves and was the lowest in stems. Organic Se accounts for more than 98% of the total Se content, primarily selenocystine, followed by methyl selenocysteine. A total of 102 VOCs were identified from C. violifolia, mainly esters, aldehydes, alcohols, and ketones. Flowers contained abundant VOCs, while stems and leaves contained fewer but similar profiles. Moreover, multivariate statistical analysis was applied to investigate the VOC variations and marker VOCs. This work can provide useful knowledge for understanding the Se characteristics and flavor of C. violifolia.


Assuntos
Cardamine , Selênio , Compostos Orgânicos Voláteis , Verduras , Cromatografia Gasosa-Espectrometria de Massas/métodos , Flores/química , Compostos Orgânicos Voláteis/análise
12.
Curr Biol ; 33(14): 2977-2987.e6, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37453425

RESUMO

How genetically regulated growth shapes organ form is a key problem in developmental biology. Here, we investigate this problem using the leaflet-bearing complex leaves of Cardamine hirsuta as a model. Leaflet development requires the action of two growth-repressing transcription factors: REDUCED COMPLEXITY (RCO), a homeodomain protein, and CUP-SHAPED COTYLEDON2 (CUC2), a NAC-domain protein. However, how their respective growth-repressive actions are integrated in space and time to generate complex leaf forms remains unknown. By using live imaging, we show that CUC2 and RCO are expressed in an interspersed fashion along the leaf margin, creating a distinctive striped pattern. We find that this pattern is functionally important because forcing RCO expression in the CUC2 domain disrupts auxin-based marginal patterning and can abolish leaflet formation. By combining genetic perturbations with time-lapse imaging and cellular growth quantifications, we provide evidence that RCO-mediated growth repression occurs after auxin-based leaflet patterning and in association with the repression of cell proliferation. Additionally, through the use of genetic mosaics, we show that RCO is sufficient to repress both cellular growth and proliferation in a cell-autonomous manner. This mechanism of growth repression is different to that of CUC2, which occurs in proliferating cells. Our findings clarify how the two growth repressors RCO and CUC2 coordinate to subdivide developing leaf primordia into distinct leaflets and generate the complex leaf form. They also indicate different relationships between growth repression and cell proliferation in the patterning and post-patterning stages of organogenesis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Cardamine , Cardamine/genética , Cardamine/metabolismo , Arabidopsis/metabolismo , Folhas de Planta , Proteínas de Homeodomínio/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ácidos Indolacéticos/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
13.
Environ Geochem Health ; 45(8): 5515-5529, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37355493

RESUMO

Selenium (Se) is an essential trace element for animals and humans. Se biofortification and Se functional agriculture are emerging strategies to satisfy the needs of people who are deficient in Se. With 200 km2 of Se-excess area, Enshi is known as the "world capital of Se." Cardamine enshiensis (C. enshiensis) is a Se hyperaccumulation plant discovered in the Se mine drainage area of Enshi. It is edible and has been approved by National Health Commission of the People's Republic of China as a new source of food, and the annual output value of the Se-rich industry in Enshi City exceeds 60 billion RMB. This review will mainly focus on the discovery and mechanism underlying Se tolerance and Se hyperaccumulation in C. enshiensis and highlight its potential utilization in Se biofortification agriculture, graziery, and human health.


Assuntos
Cardamine , Selênio , Oligoelementos , Humanos , Selênio/análise , Plantas , China
14.
Sci China Life Sci ; 66(9): 2099-2111, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36814047

RESUMO

Sepsis is a life-threatening organ dysfunction caused by the dysregulated response of the host to an infection, and treatments are limited. Recently, a novel selenium source, selenium-enriched Cardamine violifolia (SEC) has attracted much attention due to its anti-inflammatory and antioxidant properties, but little is known about its role in the treatment of sepsis. Here, we found that SEC alleviated LPS-induced intestinal damage, as indicated by improved intestinal morphology, and increased disaccharidase activity and tight junction protein expression. Moreover, SEC ameliorated the LPS-induced release of pro-inflammatory cytokines, as indicated by decreased IL-6 level in the plasma and jejunum. Moreover, SEC improved intestinal antioxidant functions by regulating oxidative stress indicators and selenoproteins. In vitro, TNF-α-challenged IPEC-1 cells were examined and showed that selenium-enriched peptides, which are the main functional components extracted from Cardamine violifolia (CSP), increased cell viability, decreased lactate dehydrogenase activity and improved cell barrier function. Mechanistically, SEC ameliorated LPS/TNF-α-induced perturbations in mitochondrial dynamics in the jejunum and IPEC-1 cells. Moreover, CSP-mediated cell barrier function is primarily dependent on the mitochondrial fusion protein MFN2 but not MFN1. Taken together, these results indicate that SEC mitigates sepsis-induced intestinal injury, which is associated with modulating mitochondrial fusion.


Assuntos
Cardamine , Selênio , Sepse , Animais , Suínos , Selênio/farmacologia , Selênio/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Cardamine/química , Cardamine/metabolismo , Dinâmica Mitocondrial , Lipopolissacarídeos , Fator de Necrose Tumoral alfa , Sepse/tratamento farmacológico
15.
J Agric Food Chem ; 71(5): 2658-2665, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36695191

RESUMO

Cardamine violifolia is a Se hyperaccumulator found in Enshi, China. In this study, spatial metallomics was applied to visualize the distribution and speciation of Se in a single seed of C. violifolia. It was found that Se reached 1729.89 ± 28.14 mg/kg and the main Se species were SeCys and SeMet in bulk seeds. Further in situ study on a single seed found that the methylated Se species located mostly in the episperm. This is the first visualized evidence of the in situ distribution of methylated Se species in the seeds of C. violifolia. In all, spatial metallomics finds a preferable accumulation of methylated Se species in the seed coat, which deepens the understanding of the tolerance of Se by C. violifolia. The protocol applied in this study may also be used for the understanding of the tolerance of heavy metals/metalloids in other hyperaccumulators.


Assuntos
Cardamine , Selênio , Sementes , China
16.
Ann Bot ; 131(4): 585-600, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-36656962

RESUMO

BACKGROUND AND AIMS: Southwestern Asia is a significant centre of biodiversity and a cradle of diversification for many plant groups, especially xerophytic elements. In contrast, little is known about the evolution and diversification of its hygrophytic flora. To fill this gap, we focus on Cardamine (Brassicaceae) species that grow in wetlands over a wide altitudinal range. We aimed to elucidate their evolution, assess the extent of presumed historical gene flow between species, and draw inferences about intraspecific structure. METHODS: We applied the phylogenomic Hyb-Seq approach, ecological niche analyses and multivariate morphometrics to a total of 85 Cardamine populations from the target region of Anatolia-Caucasus, usually treated as four to six species, and supplemented them with close relatives from Europe. KEY RESULTS: Five diploids are recognized in the focus area, three of which occur in regions adjacent to the Black and/or Caspian Sea (C. penzesii, C. tenera, C. lazica), one species widely distributed from the Caucasus to Lebanon and Iran (C. uliginosa), and one western Anatolian entity (provisionally C. cf. uliginosa). Phylogenomic data suggest recent speciation during the Pleistocene, likely driven by both geographic separation (allopatry) and ecological divergence. With the exception of a single hybrid (allotetraploid) speciation event proven for C. wiedemanniana, an endemic of southern Turkey, no significant traces of past or present interspecific gene flow were observed. Genetic variation within the studied species is spatially structured, suggesting reduced gene flow due to geographic and ecological barriers, but also glacial survival in different refugia. CONCLUSIONS: This study highlights the importance of the refugial regions of the Black and Caspian Seas for both harbouring and generating hygrophytic species diversity in Southwestern Asia. It also supports the significance of evolutionary links between Anatolia and the Balkan Peninsula. Reticulation and polyploidization played a minor evolutionary role here in contrast to the European relatives.


Assuntos
Cardamine , Filogenia , Cardamine/genética , Turquia , Variação Genética , Europa (Continente)
17.
Sci Total Environ ; 863: 160940, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36528102

RESUMO

Cardamine violifolia belongs to the Brassicaceae family and is a selenium (Se) hyperaccumulator found in Enshi, China. In this study, C. violifolia was found to accumulate mercury (Hg) in its roots and aboveground parts at concentrations up to 6000 µg/g. In the seedling and mature stages, the bioaccumulation factors (BAFS) of Hg reached 1.8-223, while the translocation factor (TF) for Hg reached 1.5. We observed a significant positive correlation between THg concentrations in plant tissues and those in the soil (r2 = 0.71-0.84). Synchrotron radiation X-ray fluorescence with focused X-ray (µ-SRXRF) showed that Hg was translocated from the roots to shoots through the vascular bundle and was transported through the leaf veins in leaves. Transmission electron microscopy showed that root cells were more tolerant to Hg than leaf cells. These findings provide insights into the mechanisms of Hg hyperaccumulation in C. violifolia. Overall, we demonstrated that C. violifolia is a promising Hg hyperaccumulator that may be used for phytoremediating Hg-contaminated farmlands.


Assuntos
Brassicaceae , Cardamine , Mercúrio , Selênio , Poluentes do Solo , Mercúrio/análise , Solo , Poluentes do Solo/análise
18.
Genes (Basel) ; 13(11)2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36421792

RESUMO

Cardamine hupingshanensis (K. M. Liu, L. B. Chen, H. F. Bai and L. H. Liu) is a perennial herbal species endemic to China with narrow distribution. It is known as an important plant for investigating the metabolism of selenium in plants because of its ability to accumulate selenium. However, the phylogenetic position of this particular species in Cardamine remains unclear. In this study, we reported the chloroplast genome (cp genome) for the species C. hupingshanensis and analyzed its position within Cardamine. The cp genome of C. hupingshanensis is 155,226 bp in length and exhibits a typical quadripartite structure: one large single copy region (LSC, 84,287 bp), one small single copy region (17,943 bp) and a pair of inverted repeat regions (IRs, 26,498 bp). Guanine-Cytosine (GC) content makes up 36.3% of the total content. The cp genome contains 111 unique genes, including 78 protein-coding genes, 29 tRNA genes and 4 rRNA genes. A total of 115 simple sequences repeats (SSRs) and 49 long repeats were identified in the genome. Comparative analyses among 17 Cardamine species identified the five most variable regions (trnH-GUG-psbA, ndhK-ndhC, trnW-CCA-trnP-UGG, rps11-rpl36 and rpl32-trnL-UAG), which could be used as molecular markers for the classification and phylogenetic analyses of various Cardamine species. Phylogenetic analyses based on 79 protein coding genes revealed that the species C. hupingshanensis is more closely related to the species C. circaeoides. This relationship is supported by their shared morphological characteristics.


Assuntos
Cardamine , Genoma de Cloroplastos , Selênio , Filogenia , Cardamine/genética , Composição de Bases
19.
BMC Plant Biol ; 22(1): 491, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36253724

RESUMO

BACKGROUND: ATP sulfurylase (ATPS) is a crucial enzyme for the selenate assimilation pathway in plants. RESULTS: In this study, genome-wide and comparative analyses of ATPS in Cardamine hupingshanensis, including sequence and structural analyses, were performed. The expression of ChATPS gene family members in C. hupingshanensis under selenium (Se) stress was also investigated, and our results suggest that ChATPS1-2 play key roles in the response to Se stress. Nine ATPS genes were found from C. hupingshanensis, which share highly conserved sequences with ATPS from Arabidopsis thaliana. In addition, we performed molecular docking of ATP sulfurylase in complex with compounds ATP, selenate, selenite, sulfate, and sulfite. ChAPS3-1 was found to have stronger binding energies with all compounds tested. Among these complexes, amino acid residues Arg, Gly, Ser, Glu, and Asn were commonly present. CONCLUSION: Our study reveals the molecular mechanism of C. hupingshanensis ATP sulfurylase interacting with selenate, which is essential for understanding selenium assimilation. This information will guide further studies on the function of the ChATPS gene family in the selenium stress response and lay the foundation for the selenium metabolic pathway in higher plants.


Assuntos
Arabidopsis , Cardamine , Selênio , Trifosfato de Adenosina , Aminoácidos/metabolismo , Arabidopsis/metabolismo , Cardamine/metabolismo , Simulação de Acoplamento Molecular , Ácido Selênico , Ácido Selenioso/metabolismo , Selênio/metabolismo , Sulfato Adenililtransferase/química , Sulfato Adenililtransferase/genética , Sulfato Adenililtransferase/metabolismo , Sulfatos/metabolismo , Sulfitos/metabolismo
20.
Ann Bot ; 130(2): 245-263, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35789248

RESUMO

BACKGROUND AND AIMS: Sexual reproduction is known to drive plant diversification and adaptation. Here we investigate the evolutionary history and spatiotemporal origin of a dodecaploid (2n = 12x = 96) Eurasian deciduous woodland species, Cardamine bulbifera, which reproduces and spreads via vegetative bulb-like structures only. The species has been among the most successful range-expanding understorey woodland plants in Europe, which raises the question of the genetic architecture of its gene pool, since its hexaploid (2n = 6x = 48) but putatively outcrossing closest relative, C. quinquefolia, displays a smaller distribution range in Eastern Europe towards the Caucasus region. Cardamine bulbifera belongs to a small monophyletic clade of four species comprising also C. abchasica (2n = 2x = 16) and C. bipinnata (unknown ploidy) from the Caucasus region. METHODS: We sequenced the genomes of the two polyploids and their two putative ancestors using Illumina short-read sequencing technology (×7-8 coverage). Covering the entire distribution range, genomic data were generated for 67 samples of the two polyploids (51 samples of C. bulbifera, 16 samples of C. quinquefolia) and 6 samples of the putative diploid taxa (4 samples of C. abchasica, 2 samples of C. bipinnata) to unravel the evolutionary origin of the polyploid taxa using phylogenetic reconstructions of biparentally and maternally inherited genetic sequence data. Ploidy levels of C. bulbifera and C. quinquefolia were analysed by comparative chromosome painting. We used genetic assignment analysis (STRUCTURE) and approximate Bayesian computation (ABC) modelling to test whether C. bulbifera represents genetically differentiated lineages and addressed the hypothesis of its hybrid origin. Comparative ecological modelling was applied to unravel possible niche differentiation among the two polyploid species. KEY RESULTS: Cardamine bulbifera was shown to be a non-hybridogenous, auto-dodecaploid taxon of early Pleistocene origin, but with a history of past gene flow with its hexaploid sister species C. quinquefolia, likely during the last glacial maximum in shared refuge areas in Eastern Europe towards Western Turkey and the Crimean Peninsula region. The diploid Caucasian endemic C. abchasica is considered an ancestral species, which also provides evidence for the origin of the species complex in the Caucasus region. Cardamine bulbifera successfully expanded its distribution range postglacially towards Central and Western Europe accompanied by a transition to exclusively vegetative propagation. CONCLUSIONS: A transition to vegetative propagation in C. bulbifera is hypothesized as the major innovation to rapidly expand its distribution range following postglacially progressing woodland vegetation throughout Europe. Preceding and introgressive gene flow from its sister species C. quinquefolia in the joint refuge area is documented. This transition and ecological differentiation may have been triggered by preceding introgressive gene flow from its sister species in the joint East European refuge areas.


Assuntos
Cardamine , Teorema de Bayes , Cardamine/genética , Filogenia , Poliploidia , Reprodução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...